Week 11
 Introduction to Data Analysis for Physics

New Textbook Sections

http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/data_analysis/Analysis/gaussian. html\#combining-distributions
http://www.cs.utexas. edu/~evanott/PHY110C Textbook/static/data analysis/Math/stats.html

Probability!

- Chance, random variables, sample space
- Notation
- $P(X)$
- $P(A B)=P(A \& B)=P\left(A^{\wedge} B\right)$
- $P(A \vee B)=P(A+B)$
- $P(A \mid B)$
- Independence
- True iff $P(A \mid B)=P(A)$
- Alternately, that $P(A B)=P(A) P(B)$

Probability Distributions

- Assign probability to each possible outcome
- Expected value is average of outcomes' values weighted by probability of outcome:
- <f>=f1*P(1)+f2*P(2)+...
- <f> need not be a possible single outcome
- Simple models: coins, dice

Sidebar: Combining Distributions

Analysis/gaussian.html\#combining-distributions
We'll need to be able to combine distributions shortly.

Flip It, Flip It Good

- Take a penny, flip 6 times, record the sequence: - e.g., HTTHHH
- If coins are fair, what is the expected number of heads?
- What are the odds of getting your particular sequence?
- In groups of 3 people, what's the average number of heads? The standard deviation of your sample?
- Report group values AND first two flips to Evan

Coin Results

Mean	Std. Dev
3	.82
1.75	1.8
4.67	.59
3	0.36
3.5	0.2

Coin Results

First \Second	H	T
H	$4->.267$	$2->.133$
T	$5->.333$	$4->.267$

Significance

- Are our results strange? How strange can they be before we call the Mint?
- Use a Gaussian model to look at statistical significance.
- z-scores, p-values, confidence intervals: next week!

Reviewing our Data

- (Cheating and using topics of future past)
- In binary case, mean is Np , variance is $\mathrm{Np}(1-\mathrm{p})$
- Apply to your sample. How many standard deviations are you away?
- For class sample, do we need to call the Mint?

Extra: OpenIntro

http://www.openintro.org/stat/slides.php

