Week 2
PHY 110C
Introduction to Data Analysis for Physics

Overview

Course Logistics
Presentation of Solutions
Discussion of Problems
Overview of Reading
Assignment 2 (and 1)

Course Logistics

- Individual submissions
- Note where you got help in comments
- Assignments due 5pm Wed (before class)
- No late grade, but presentation of solutions in class (can resubmit!)
- Grades are posted - questions go to Evan - Includes comments on submission
- Office Hours W 2-4 BIO 301 (on syllabus)
- Reading, assignment posted

Solution Presentations

Common Problems / Points for Discussion

- Capitalization
- [] vs. () vs. \{\}
- COMMENTS! (or text style for cell)
- Grouping statements (for grading)
- Function definition
- Problem 1 - Norm[list] vs. Norm[g[list]]
- Problem 2 - append, union, etc.
- Problem 3 -WOW!
- Template for solutions

Modules

Modules - setting scope for variable
Default is global:
$\mathrm{f}=$ SoundNote[0]
(* new notebook *)
f[n_]:= SoundNote[n]
Can help for making a "suite":
Module[\{f\}, f[n_] := SoundNote[n]; Sound [\{f[0], f[4], f[7],f[12]\}]]

Packages, Special Characters

Needed infrequently
Packages for "extending" Mathematica.
ErrorBarPlots
VectorAnalysis (in version 8)
Needs["Package`"]

Special characters for making program pretty \[Delta] \[Transpose]

Tables and Matrices

Matrices are lists of lists
Can be "ragged" \{\{1\},\{1,2,3\}\}
Many built-in functions
Det, Transpose, Eigenvalues
Tables are a generator of lists
Table[i^2, \{i, 1, 10\}]
data =Table[\{Sin[i], Cos[i]\}, \{i, 1, 200\}];
Tables good for transformations too
Table[\{data[[i,2]], data[[i,1]] * 2 data[[i,2]]\},
\{i,Length[data]\}];

GRAPHS

Graphs

Finally, expressing data! MANY variants for making life easy

Plotting lists of data
Plotting functions
Setting axes, legends, color, etc. SPOILER:

Can combine many plots of different types to create "professional" graphs
(histogram data, theoretical values, fitted curve)

My Title

Graphs

Plot $[\{\operatorname{Sin}[x], \operatorname{Cos}[x]\},\{x, 0,2$ Pi\}, AxesLabel -> \{"x", "f(x)"\},
PlotLabel -> "My Title", PlotRange -> \{\{0, 3 Pi\},
\{-1.5, 1.5\}\},
PlotStyle -> \{\{RGBColor[0.900082, 0.425655 ,
0.093112], Dashed,

Thin\}, \{RGBColor[0, 1, 0], DotDashed, Thick\}\},
PlotLegends -> "Expressions"]

Graphs

list $=$ Table[Table[\{a, $\left.\mathrm{a}^{\wedge} 2+50 \operatorname{Sin}\left[c^{*} \mathrm{a}\right]\right\}$,
\{a, 0, 20\}], \{c, 0, 3\}];
ListPlot[list,
PlotLegends -> \{"data 1", "data 2", "data 3",
"data 4"\},
PlotStyle -> PointSize[Medium]]

Assignment 2

- http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/dat a_analysis/_downloads/assignment2.pdf

