Week 3
PHY 110C
Introduction to Data Analysis for Physics

Overview

Presentation of Solutions
Discussion of Problems
Overview of Reading
Assignment 3

Solution Presentations

Common Problems / Points for Discussion

- Problem 1-Style["text", Orange, ...]
- Plot vs. ListPlot for function vs. data
- Symbols can't be plotted
- Capitalization
- Problem 3 - Plotting lists

O ListLinePlot[\{ $\{90,100,50\},\{50,10,40\}\}]$
O ListLinePlot[$\{\{90,50\},\{100,10\},\{50,40\}\}]$
O First plots two different lists with first coordinate assumed to be the index
O Second plots single list with each point given

Common Problems / Points for Discussion

- Problem 2-Table[f[x], \{x, start, end, step\}] - Intended to show manipulation of data in a table, learn some properties of binomial coefficients (failure in description on my part)
- ex:Table[data[[i, i;;i+2]], \{i, 1, k\}]
- Extra credit

Importing Data

- Import["filename"] pulls data into a matrix
- data = Import["http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/data_analysis/_do wnloads/without.csv"];
ListPlot[data]
- Many known filetypes (CSV, txt, XLS, PNG)

Greatforinterfacing with datacollection software

- ReadList["file", specialOptions] for less common formats - see textbook

Exporting Data

- Export["filename", expression] creates a file representative of expression
- Can export data as a table (CSV, txt, XLS)
- Can export images (PNG, JPG, GIF)
- Can export animated images (see textbook)
- Export["test.png", Plot[x^2, \{x,-4,4\}]]; Import ["test.png"]

3D Graphs and More

http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/dat a_analysis/Mathematica/functions_graphs. html\#basic-3d-graphs

3D Graphs

http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/dat a_analysis/Mathematica/functions_graphs. html\#basic-3d-graphs

Animations

- Manipulate[expr, \{var, start, finish, step\}] lets you manually vary var
- Animate[expr, \{var, start, finish, step\}] is same, but will do so automatically
- Both useful for looking at data (estimating a fit by hand?), but not for presentation (CDFs aren't widely accepted)

Assumptions

- Motivation: some functions can simplify if they know more
- Ex: Integrate
- Integrate[Exp[$\left.\left[x^{\wedge} k\right],\{x, 0,1\}\right]$
- Integrate[$\operatorname{Exp}\left[x^{\wedge} \mathrm{k}\right],\{x, 0,1\}$, Assumptions$>\{k>1\}]$
- Better example: hydrogen atom (see book)

Assignment 3

- http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/dat a_analysis/_downloads/assignment3.pdf

