Week 3

PHY 110C Introduction to Data Analysis for Physics

Overview

- Presentation of Solutions
- Discussion of Problems
- Overview of Reading
- Assignment 3

Solution Presentations

Common Problems / Points for Discussion

- Problem 1 Style["text", Orange, ...]
 - Plot vs. ListPlot for function vs. data
 - Symbols can't be plotted
 - Capitalization
- Problem 3 Plotting lists
 - O ListLinePlot[{ {90, 100, 50}, {50, 10, 40} }]
 - ListLinePlot[{{90, 50}, {100, 10}, {50, 40}}]
 - First plots two different lists with first coordinate assumed to be the index
 - Second plots single list with each point given

Common Problems / Points for Discussion

- Problem 2 Table[f[x], {x, start, end, step}]
 - Intended to show manipulation of data in a table, learn some properties of binomial coefficients (failure in description on my part)
 - o ex: Table[data[[i, i;;i+2]], {i, 1, k}]
 - Extra credit

Importing Data

- Import["filename"] pulls data into a matrix
- data = Import["http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/data_analysis/_do wnloads/without.csv"]; ListPlot[data]
- Many known filetypes (CSV, txt, XLS, PNG)
- Great for interfacing with data collection software
- ReadList["file", specialOptions] for less common formats - see textbook

Exporting Data

- Export["filename", expression] creates a file representative of expression
- Can export data as a table (CSV, txt, XLS)
- Can export images (PNG, JPG, GIF)
- Can export animated images (see textbook)
- Export["test.png", Plot[x^2, {x,-4,4}]]; Import ["test.png"]

3D Graphs and More

http://www.cs.utexas.
edu/~evanott/PHY110C_Textbook/static/dat
a_analysis/Mathematica/functions_graphs.
html#basic-3d-graphs

3D Graphs

http://www.cs.utexas.
edu/~evanott/PHY110C_Textbook/static/dat
a_analysis/Mathematica/functions_graphs.
html#basic-3d-graphs

Animations

- Manipulate[expr, {var, start, finish, step}] lets you manually vary var
- Animate[expr, {var, start, finish, step}] is same, but will do so automatically
- Both useful for looking at data (estimating a fit by hand?), but not for presentation (CDFs aren't widely accepted)

Assumptions

- Motivation: some functions can simplify if they know more
- Ex: Integrate
 - Integrate[Exp[x^k], {x, 0, 1}]
 - Integrate[Exp[x^k], {x, 0, 1}, Assumptions->{k > 1}]
- Better example: hydrogen atom (see book)

Assignment 3

 http://www.cs.utexas. edu/~evanott/PHY110C_Textbook/static/dat a_analysis/_downloads/assignment3.pdf